
Vector Spaces and Linear Transformations 

Vector spaces A vector space is a nonempty set V , whose objects are called vectors, equipped 

with two operations, called addition and scalar multiplication: For any two vectors u, v in V and 

a scalar c, there are unique vectors u + v and cu in V such that the following properties are 

satisfied. 

 1. u + v = v + u,  

2. (u + v) + w = u + (v + w),  

3. There is a vector 0, called the zero vector, such that u + 0 = u,  

4. For any vector u there is a vector −u such that u + (−u) = 0;  

5. c(u + v) = cu + cv, 

 6. (c + d)u = cu + du,  

7. c(du) = (cd)u,  

8. 1u = u.  

By definition of vector space it is easy to see that for any vector u and scalar c,  

0u = 0, c0 = 0, −u = (−1)u.  

For instance, 

 Example1.1.  

(a) The Euclidean space Rn is a vector space under the ordinary addition and scalar 

multiplication. 

 (b) The set Pn of all polynomials of degree less than or equal to n is a vector space under the 

ordinary addition and scalar multiplication of polynomials.  

(c) The set M(m, n) of all m × n matrices is a vector space under the ordinary addition and scalar 

multiplication of matrices.  

(d) The set C[a, b] of all continuous functions on the closed interval [a, b] is a vector space under 

the ordinary addition and scalar multiplication of functions. 

 Definition 1.1. Let V and W be vector spaces, and W ⊆ V. If the addition and scalar 

multiplication in W are the same as the addition and scalar multiplication in V, then W is called a 

subspace of V . 

If H is a subspace of V, then H is closed for the addition and scalar multiplication of V, i.e., for 

any u, v ∈ H and scalar c ∈ R, 

 we have u + v ∈ H, cv ∈ H.  



For a nonempty set S of a vector space V, to verify whether S is a subspace of V , it is required 

to check (1) whether the addition and scalar multiplication are well defined in the given subset S, 

that is, whether they are closed under the addition and scalar multiplication of V ; (2) whether the 

eight properties (1-8) are satisfied. However, the following theorem shows that we only need to 

check (1), that is, to check whether the addition and scalar multiplication are closed in the given 

subset S. 

SUBSPACES 

Let V be a vector space over a field F. A non-void subset S of V is said to be a subspace of V if S itself is 

a vector space over F under the operations on V restricted to S. 

If V is a vector space over a field F, then the null (zero) space {0V } and the entire space V are subspaces 

of V. These two subspaces are called trivial (improper) subspaces of V and any other subspace of V is 

called a non-trivial (proper) subspace of V. 

Q1.  Show that S = {(0, b, c) : b, c ∈ R} is a subspace of real vector space R3. 

SOLUTION: Obviously, S is a non-void subset of R3. Let u = (0, b1, c1), v = (0, b2, c2) ∈ S and λ, µ∈ R. 

Then, 

λu+µv = λ(0, b1, c1) +µ(0, b2, c2) 

 ⇒ λu+µν = (0, λb1 +µb2, λc1 +µc2) ∈ S. 

Hence, S is a subspace of R3. 

Linear independence and linear dependence 

 Let S = {v1,... ,vk} ⊂ V , a vector space. We say that S is linearly dependent (l.d.) if there are 

scalars a1,... ,ak not all zero for which 

 a1v1 + a2v2 + ··· + akvk = 0.  

Otherwise we say S is linearly independent (l.i.). 

Proposition : If S = {v1,... ,vk} ⊂ V , a vector space, is linearly dependent, then one member of 

this set can be expressed as a linear combination of the others. 

 Proof.  We know that there are scalars a1,... ,ak  

such that a1v1 + a2v2 + ··· + akvk = 0  

Since not all of the coefficients are zero, we can solve for one of the vectors as a linear 

combination of the other vectors. 



Q1. In the vector space of polynomials P3, determine if the set S is linearly independent or 

linearly dependent. S = 2 + x − 3x 2 − 8x 3 , 1 + x + x 2 + 5x 3 , 3 − 4x 2 − 7x 3 

 Massage according to the definitions of scalar multiplication and vector addition in the 

definition of P3 (Example VSP) and use the zero vector for this vector space 

(2a1 + a2 + 3a3) + (a1 + a2) x + (−3a1 + a2 − 4a3) x
 2 + (−8a1 + 5a2 − 7a3) x

 3 = 0 + 0x + 0x 2 + 0x 

 The definition of the equality of polynomials allows us to deduce the following four equations 

2a1 + a2 + 3a3 = 0  

a1 + a2 = 0 

 −3a1 + a2 − 4a3 = 0  

−8a1 + 5a2 − 7a3 

0Row-reducing the coefficient matrix of this homogeneous system leads to the unique solution a1 

= a2 = a3 = 0. So the only relation of linear dependence on S is the trivial one, and this is linear 

independence for S (Definition LI) 

Q2 Express (1, 7, -4) as a linear combination of the vectors (1, -3, 2) and (2,-1, 1) in the vector 

space V3 of real numbers R. 

Solution. Let (1, 7, -4) = a(1, -3, 2) + b(2,-1, 1) 

                                     = (a+2b, -3a-2b, 2a+b) 

Then, we have  

                                    a+2b=1 

                                    -3a-b=7 

                                     2a+b=-4 

Solving the first and second equation, we get a= -3 and b=2. The values of a=-3 and b=2 also 

satisfy the third equation. 

Thus (1, 7, -4) = -3(1, -3, 2) + 2(2,-1, 1) is the required linear combination. 

Bases: 

The idea of a basis is that of finding a minimal generating set for a vector space. 

Let V be a vector space and S = {v1,... ,vk} ⊂ V . We call S a spanning set for the subspace U = 

S(S). 

Suppose that V is a vector space, and S = {v1,... ,vk} is a linearly independent spanning set for V 

. Then S is called a basis of V.  Modify this definition correspondingly for subspaces. 



or 

Let H be a subspace of a vector space V . An ordered set B = {v1, v2, . . . , vp} of vectors in V is 

called a basis for H if 

(a) B is a linearly independent set, and 

(b) B spans H, that is, H = Span {v1, v2, . . . , vp}. 

Dimensions of vector spaces: 

A vector space V is said to be finite dimensional if it can be spanned by a set of finite number of vectors. 

The dimension of V, denoted by dim V, is the number of vectors of a basis of V . The dimension of the 

zero vector space {0} is zero. If V cannot be spanned by any finite set of vectors, then V is said to be 

infinite dimensional. 

Or 

A vector space V(F) is said to be a finite dimensional vector space if there exists a finite subset of V that 

spans it. A vector space which is not finite dimensional may be called an infinite dimensional vector 

space. 

Q1. Show that the set B = {1, x, x2,...,xn} is a basis for the vector space of all real polynomials of degree 

not exceeding n.  

SOLUTION : Let λ0, λ1,...,λn ∈ R be such that  

λ0 · 1+λ1 · x+···+λnxn = 0(x) (zero polynomial)  

Then, λ0 · 1+λ1 · x+···+λnxn = 0(x) (zero polynomial)  

⇒ λ0 +λ1x+λ2x2 +···+λnxn = 0+0x+0x2 +···+0xn +...  

⇒ λ0 = λ1 = ··· = λn = 0  

Therefore, the set B is linearly independent. Also, the set B spans the vector space Pn(x) of all real 

polynomials of degree not exceeding n, because every polynomial of degree less than or equal n is a 

linear combination of B. Hence, B is a basis for the vector space Pn(x) of all real polynomials of degree 

not exceeding n. 

Q2. Find the coordinates of the vector (a,b,c) in the real vector space R3 relative to the ordered basis 

(b1,b2,b3), where b1 = (1,0,−1), b2 = (1,1,1), b3 = (1,0,0). 

SOLUTION:  Let λ,µ, γ ∈ R be such that 

 (a,b,c) = λ(1,0,−1) +µ(1,1,1) +γ(1,0,0). 

 ⇒ (a,b,c)=(λ+µ+γ,µ,−λ+µ)  

⇒ λ+µ+γ = a, µ= b, −λ+µ= c  

⇒ λ = b−c, µ= b, γ = a−2b+c.  

Hence, the coordinates of vector (a,b,c) ∈ R3 relative to the given ordered basis are (b − c, b, a−2b+c) 



 

Q3. Find the coordinate vector of v = (1,1,1) relative to the basis B = {v1 = (1,2,3), v2 = (−4,5,6), v3 = 

(7,−8,9)} of vector space R3. 

SOLUTION : Let x,y,z ∈ R be such that 

v = xv1 +yv2 +zv3  

⇒ (1,1,1) = x(1,2,3) +y(−4,5,6) +z(7,−8,9) 

 ⇒ (1,1,1)=(x−4y+7z, 2x+5y−8z, 3x+6y+9z)  

⇒ x−4y+7z = 1, 2x+5y−8z = 1, 3x+6y+9z = 1  

⇒ x = 7 /10, y = −2/ 15, z = −1 /30 

Hence [v]B  = [

7 /10
−2/ 15
−1 /30

]  is the coordinate vector of v relative to basis B. 

Linear Transformations  

Let V and W be vector spaces. A function T : V → W is called a linear transformation if for any 

vectors u, v in V and scalar c, 

 (a) T(u + v) = T(u) + T(v), 

 (b) T(cu) = cT(u).  

The inverse images T −1 (0) of 0 is called the kernel of T and T(V ) is called the range of T 

Example 

 Q.1. Let A is an m × m matrix and B an n × n matrix.  

The function F: M(m, n) → M(m, n), F(X) = AXB 

 is a linear transformation. For instance, for m = n = 2,  

 

Solution: let A = [
1 2
1 3

]¸  B =[
2 1
2 3

]¸    X = [
𝑥1 𝑥2

𝑥3 𝑥4
] .  

 

Then F : M(2, 2) → M(2, 2) is given by 

 

 F(X) = [
1 2
1 3

] [
𝑥1 𝑥2

𝑥3 𝑥4
] [

2 1
2 3

]¸ = 

[
2x1  +  2x2  + 4x3  + 4x4 𝑥1 +  3𝑥2  +  2𝑥3  +  6𝑥4

2𝑥1  +  2𝑥2 +  6𝑥3 +  6𝑥4 𝑥1 +  3𝑥2 +  3𝑥3 +  9𝑥4
]  

 

 

 



Q2. Show that the mappings T : R2→R3 defined by T(x, y)= (x+1, 2y, x+y)  

Solution: Let u = (x1, y1) and v= (x2, y2) ∈ R2 

Then u+ v = (x1, y1) + (x2, y2) 

                  =(x1 + x2, y1 + y2 ) ∈ R2 

T(u+ v) = T(x1 + x2, y1 + y2) 

                  =(x1 + x2+1, 2(y1 + y2), (x1 + x2) + (y1 + y2 )) 

               = (x1 + x2+1, 2y1 + 2y2, (x1 + y1) + (x2+ y2 ))……   (1) 

And T(u) +T(v) = T(x1, y1) + T(x2, y2) 

                       = (x1 + 1, 2y1 x1 + y1)+( x2+ 1, 2y1, x2+ y2 ) 

                       = ((x1 + 1) +( x2+ 1, 2y1+2 y2, (x1 + y1)+ (x2+ y2)) 

                       = ((x1 + x2+2, 2y1 + 2y2, (x1 + y1) + (x2+ y2 ))……   (2) 

From (1) & (2) T(u+ v) ≠ T(u) +T(v) 

Hence T is not a linear transformation. 

Range:  If V(F) and W(F) are vector spaces and T:V→W is a linear Transformation, Then the image set 

of V under T is R(T) or T(V) i.e. Range T ={T(v)/v∈ V} 

A linear transformation (or linear mapping) is a mapping T: V → W such that, for each u, v ∈ V, and for 

each c ∈ F , T(u + v) = T(u) + T(v), and T(cu) = c T(u).  

V is called the domain of the linear transformation T : V → W.  

W is called the codomain of the linear transformation T : V → W.  

The identity transformation IV : V → V is defined by IV (v) = v for each v ∈ V. IV is also denoted by I.  

The zero transformation 0: V → W is defined by 0(v) = 0W for each v ∈ V.  

A linear operator is a linear transformation T: V → V. 

 

Null Space or Kernel: :  If V(F) and W(F) are vector spaces and T:V→W is a linear Transformation then 

the set of all those vectors in V whose image under T is zero, is called Kernal or Null space of T, which is 

denoted by N(T): 

Null space of T= N(T)= { v∈ V; T(v)=0∈W} 

Rank: If V(F) and W(F) are vector spaces and T:V→W is a linear Transformation then the dimension of 

range space of T is called the rank of T and is denoted by ρ(T). 

Thus ρ(T)= dim(Range T) 



Nullity: If V(F) and W(F) are vector spaces and T:V→W is a linear Transformation then the dimension 

of null spaces of T is called the nullity of T and is denoted by v(T) 

Thus v(T)= dim(Null space of T). 

 

 


